Large Neutrino Secret Interactions Have a Small Impact on Supernovae

17Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

When hypothetical neutrino secret interactions (νSI) are large, they form a fluid in a supernova (SN) core, flow out with sonic speed, and stream away as a fireball. For the first time, we tackle the complete dynamical problem and solve all steps, systematically using relativistic hydrodynamics. The impact on SN physics and the neutrino signal is remarkably small. For complete thermalization within the fireball, the observable spectrum changes in a way that is independent of the coupling strength. One potentially large effect beyond our study is quick deleptonization if νSI violate lepton number. By present evidence, however, SN physics leaves open a large region in parameter space, where laboratory searches and future high-energy neutrino telescopes will probe νSI.

Cite

CITATION STYLE

APA

Fiorillo, D. F. G., Raffelt, G. G., & Vitagliano, E. (2024). Large Neutrino Secret Interactions Have a Small Impact on Supernovae. Physical Review Letters, 132(2). https://doi.org/10.1103/PhysRevLett.132.021002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free