Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer

90Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

By mining DNA microarray data bases at GenBank™, we identified up-regulation of membrane type 1 matrix metalloproteinase (MT1-MMP) in human primary and metastatic prostate cancer specimens as compared with nonmalignant prostate tissues. To explore the role of up-regulated MT1-MMP in early stage cancer progression, we have employed a three-dimensional cell culture model. Minimally invasive human prostate cancer cells (LNCaP) were transfected with MT1-green fluorescent protein (GFP) chimeric cDNA as compared with GFP cDNA, and morphologic and phenotypic changes were characterized. GFP-expressing LNCaP cells formed multicellular spheroids with cuboidal-like epithelial morphology, whereas MT1-GFP-expressing cells displayed a fibroblast-like morphology and a scattered growth pattern in type I collagen gels. Cell morphologic changes were accompanied by decreased epithelial markers and enhanced mesenchymal markers, consistent with epithelial-to-mesenchymal transition. MT1-MMP-induced morphologic change and cell scattering were abrogated by target inhibition of either the catalytic domain or the hemopexin domain. We further demonstrated that MT1-MMP-induced phenotypic changes were dependent upon up-regulation of Wnt5a, which has been implicated in epithelial-to-mesenchymal transition. We conclude that MT1-MMP plays an important role in early cancer dissemination by converting epithelial cells to migratory mesenchymal-like cells.

Cite

CITATION STYLE

APA

Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P., & Zucker, S. (2008). Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. Journal of Biological Chemistry, 283(10), 6232–6240. https://doi.org/10.1074/jbc.M705759200

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free