Bio-inspired composite structures subjected to underwater impulsive loading

82Citations
Citations of this article
88Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Designing lightweight high-performance materials that can sustain high impulsive loadings is of great interest to marine and civil applications. When designing tough, strong new materials from relatively weak components, mimicking structures from nature can be a highly promising strategy, as illustrated by nacre from red abalone shells. One of nacre's most impressive features is its ability to laterally spread damage and dissipate energy over millimetre length scales at crack tips and other defects. In this work, a composite panel is redesigned to mimic nacre's microstructure. The bio-inspired composite panel and the original composite structure, which have identical areal mass, are subjected to an underwater impulsive loading scenario. Their performances are compared numerically in terms of damage and deflection. A finite element fluid-structure interaction model is developed to capture the water impact on E-glass/vinylester composite facets and to provide insights into the deformation modes and failure mechanisms. Damage and degradation in individual unidirectional composite laminas are simulated using Hashin's composite damage model. The delamination between laminas is modelled by a bilinear cohesive model. Results interpreted from this numerical study will be used as guidance for the future manufacturing and experimental characterisation of bio-inspired composite structures. © 2013 Published by Elsevier B.V. All rights reserved.

Cite

CITATION STYLE

APA

Tran, P., Ngo, T. D., & Mendis, P. (2014). Bio-inspired composite structures subjected to underwater impulsive loading. Computational Materials Science, 82, 134–139. https://doi.org/10.1016/j.commatsci.2013.09.033

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free