Objective: Nintedanib (NDNB) is a triple receptor tyrosine kinase inhibitor with poor solubility in neutral conditions and low bioavailability. A self-microemulsifying drug delivery system (SMEDDS) of NDNB was developed to improve drug solubility in physical conditions and absorption in vivo. Methods: The NDNB-SMEDDS formulation was optimized via pseudo-ternary phase diagrams. The physicochemical properties of NDNB-SMEDDS, viz., morphological observation, droplet size, stability, compatibility and in vitro release were investigated. The permeability of NDNB-SMEDDS was detected using both a Caco-2 cell monolayer in vitro and an intestinal perfusion study in vivo. Furthermore, the pharmacokinetic characteristics of NDNB-SMEDDS were evaluated. Results: The optimal formulation was composed of MCT as an oil phase, RH 40 as a surfactant and ethylene glycol as a co-surfactant. The average droplet size of the microemulsion was about 23 nm with good stability within 30 days. The formulation did not exhibit any obvious cytotoxic effect on Caco-2 cells. Permeability of nintedanib in a Caco-2 cell monolayer was enhanced by 2.8-fold upon incorporation in SMEDDS compared with the drug solution. The intestinal perfusion study demonstrated that the Papp of NDNB-SMEDDS increased by 3.0-fold in the entire intestine and 3.2-fold in the colon in comparison with the drug solution. The pharmacokinetics study showed that the AUC of the NDNB-SMEDDS increased significantly. Conclusion: This study showed that the self-microemulsion formulations could improve the absorption of nintedanib, and can thus serve as a promising carrier for the oral delivery of nintedanib.
CITATION STYLE
Liu, H., Mei, J., Xu, Y., Tang, L., Chen, D., Zhu, Y., … Ding, H. (2019). Improving the oral absorption of nintedanib by a self-microemulsion drug delivery system: Preparation and in vitro/in vivo evaluation. International Journal of Nanomedicine, 14, 8739–8751. https://doi.org/10.2147/IJN.S224044
Mendeley helps you to discover research relevant for your work.