Our study evaluates a multiple criteria linear programming (MCLP) and other data mining approaches to predict auditor changes using a portfolio of financial statement measures to capture financial distress. The results of the MCLP approach and the other data mining approaches show that these methods perform reasonably well to predict auditor changes using financial distress variables. Overall accuracy rates are more than 60 percent, and true positive rates exceed 80 percent. Our study is designed to establish a starting point for auditor-change prediction using financial distress variables. Further research should incorporate additional explanatory variables and a longer study period to improve prediction rates. © 2011 The Clute Institute.
CITATION STYLE
Kwak, W., Eldridge, S., Shi, Y., & Kou, G. (2011). Predicting auditor changes using financial distress variables and the multiple criteria linear programming (MCLP) and other data mining approaches. Journal of Applied Business Research, 27(5), 73–84. https://doi.org/10.19030/jabr.v27i5.5597
Mendeley helps you to discover research relevant for your work.