Damping methodology for condensed solid rocket motor structural models

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.
Get full text

Abstract

ESA's new small launcher - VEGA - has been designed as a single body launcher with three solid rocket motor stages and an additional liquid propulsion upper module used for attitude and orbit control, and satellite release. Part of the mission analysis is the so-called launcher-satellite coupled loads analysis which aims at computing the dynamic environment of the satellite for the most severe load cases in flight. To allow such analyses to be processed in short time, all stages of the launcher finite element model are condensed. The condensed launcher mathematical model can subsequently be coupled to a condensed satellite mathematical model. To obtain accurate predictions of the satellite dynamic environment it is evident that the damping of the entire system has to be defined in a representative way. This paper explains a methodology to compute the modal damping matrix of a superelement on the basis of the structural damping ratios assigned to the various materials in the associated finite element model and the associated complex strain energy of the modeshapes. The methodology turns out to be well suited for the computation of the modal damping matrix of condensed solid rocket motor structural models, as evidenced by correlation with firing tests conducted for the first stage motor of the VEGA launcher. ©2010 Society for Experimental Mechanics Inc.

Cite

CITATION STYLE

APA

Fransen, S., Fischer, H., Kiryenko, S., Levesque, D., & Henriksen, T. (2011). Damping methodology for condensed solid rocket motor structural models. In Conference Proceedings of the Society for Experimental Mechanics Series (Vol. 3, pp. 273–281). Springer New York LLC. https://doi.org/10.1007/978-1-4419-9834-7_25

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free