Background: The aim of the present study was to determine radioactive concentrations in fertilizers known to contain essential nutrients. Results of this study could be used as basic data to monitor the impact of chemical fertilizers on the environment and public health. Nitrogen fertilizers, calcium fertilizers, sulfur fertilizers, phosphate acid fertilizers, and potassium chloride fertilizers were used in this study. Materials and Methods: Five chemical fertilizers were pulverized, placed in polyethylene containers, and weighed. The time to measure each specimen was set to be 3,600 seconds for a scintillator-based gamma-ray spectroscopy system. Concentration of gamma radionuclide was analyzed based on obtained spectra. At the end of the measurement, the spectrum file was stored and used to calculate radioactive concentrations using a gamma-ray spectrometer software. Results and Discussion: In the nitrogen fertilizer, 3.49 ± 5.71 Bq/kg of 137Cs, 34.43 ± 7.61 Bq/kg of 134Cs, and 569.16 ± 91.15 of 40K were detected whereas 131I was not detected. In the calcium fertilizer, 5.74 ± 4.40 Bq/kg of 137Cs (the highest concentration among all fertilizers), 22.37 ± 5.39 Bq/kg of 134Cs, and 433.67 ± 64.24 Bq/kg of 40K were detected whereas 131I was not detected. In the sulfur fertilizer, 347.31 ± 55.73 Bq/kg of 40K, 19.42 ± 4.53 Bq/kg of 134Cs, 2.21 ± 3.49 of 137Cs, and 0.04 ± 0.22 Bq/Kg of 131I were detected. In the phosphoric acid fertilizer, 70,007.34 ± 844.18 Bq/kg of 40K (the highest concentration among all fertilizers) and 46.07 ± 70.40 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. In the potassium chloride fertilizer, 12,827.92 ± 1542.19 Bq/kg of 40K was and 94.76 ± 128.79 Bq/kg of 134Cs were detected whereas neither 137Cs nor 131I was detected. The present study examined inorganic fertilizers produced by a single manufacturer. There might be different results according to the country and area from which fertilizers are imported. Further studies about inorganic fertilizers in more detail are needed to create measures to reduce 40K. Conclusion: Measures are needed to reduce radiation exposure to 40K contained in fertilizers including phosphoric acid and potassium chloride fertilizers.
CITATION STYLE
Kim, G. H., & Cho, J. H. (2022). Radioactive Concentrations in Chemical Fertilizers. Journal of Radiation Protection and Research, 47(4), 195–203. https://doi.org/10.14407/jrpr.2021.00269
Mendeley helps you to discover research relevant for your work.