Zinc–air batteries proffer high energy density and cyclic stability at low costs but lack disadvantages like sluggish reactions at the cathode and the formation of by-products at the cathode. To resolve these issues, a new perovskite material, CaCu3Ti4O12 (CCTO), is proposed as an efficacious electrocatalyst for oxygen evolution/reduction reactions to develop zinc–air batteries (ZAB). Synthesis of this material adopted an effective oxalate route, which led to the purity in the electrocatalyst composition. The CCTO material is a proven potential candidate for energy applications because of its high dielectric permittivity (ε) and occupies an improved ORR-OER activity with better onset potential, current density, and stability. The Tafel value for CCTO was obtained out to be 80 mV dec−1. The CCTO perovskite was also evaluated for the zinc–air battery as an air electrode, corresponding to the high specific capacitance of 801 mAh g−1 with the greater cyclic efficiency and minimum variations in both charge/discharge processes. The highest power density (Pmax) measured was 127 mW cm−2. Also, the CCTO based paper battery shows an excellent performance achieving a specific capacity of 614 mAh g−1. The obtained results promise CCTO as a potential and cheap electrocatalyst for energy applications.
CITATION STYLE
Bhardwaj, U., Sharma, A., Gupta, V., Batoo, K. M., Hussain, S., & Kushwaha, H. S. (2022). High energy storage capabilities of CaCu3Ti4O12 for paper-based zinc–air battery. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-07858-1
Mendeley helps you to discover research relevant for your work.