This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. © 2010 by the authors.
CITATION STYLE
Jiménez-Hernández, H., González-Barbosa, J. J., & Garcia-Ramírez, T. (2010). Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model. Sensors, 10(8), 7576–7601. https://doi.org/10.3390/s100807576
Mendeley helps you to discover research relevant for your work.