Validation of energy deposition simulations for proton and heavy ion losses in the CERN Large Hadron Collider

  • Lechner A
  • Auchmann B
  • Baer T
  • et al.
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Monte Carlo shower simulations are essential for understanding and predicting the consequences of beam losses in high-energy proton and ion colliders. Shower simulations are routinely used at CERN for estimating the beam-induced energy deposition, radiation damage, and radioactivity in the Large Hadron Collider (LHC). Comparing these shower simulations against beam loss measurements is an important prerequisite for assessing the predictive ability of model calculations. This paper validates fluka simulation predictions of beam loss monitor (BLM) signals against BLM measurements from proton fills at 3.5 and 4 TeV and 208 Pb 82 + ion fills at 1.38 A TeV . The paper addresses typical loss scenarios and loss mechanisms encountered in LHC operation, including proton collisions with dust particles liberated into the beams, halo impact on collimators in the betatron cleaning insertion, proton-proton collisions in the interaction points, and dispersive losses due to bound-free pair production in heavy ion collisions. Model predictions and measured signals generally match within a few tens of percent, although systematic differences were found to be as high as a factor of 3 for some regions and source terms.

Cite

CITATION STYLE

APA

Lechner, A., Auchmann, B., Baer, T., Bahamonde Castro, C., Bruce, R., Cerutti, F., … Skordis, E. (2019). Validation of energy deposition simulations for proton and heavy ion losses in the CERN Large Hadron Collider. Physical Review Accelerators and Beams, 22(7). https://doi.org/10.1103/physrevaccelbeams.22.071003

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free