Feasibility study of Mg storage in a bilayer silicene anode via application of an external electric field

0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

With the goal of developing a Si-based anode for Mg-ion batteries (MIBs) that is both efficient and compatible with the current semiconductor industry, the current research utilized classical Molecular Dynamics (MD) simulation in investigating the intercalation of a Mg2+ ion under an external electric field (E-field) in a 2D bilayer silicene anode (BSA). First principles density functional theory calculations were used to validate the implemented EDIP potentials. Our simulation shows that there exists an optimum E-field value in the range of 0.2-0.4 V Å−1 for Mg2+ intercalation in BSA. To study the effect of the E-field on Mg2+ ions, an exhaustive spread of investigations was carried out under different boundary conditions, including calculations of mean square displacement (MSD), interaction energy, radial distribution function (RDF), and trajectory of ions. Our results show that the Mg2+ ions form a stable bond with Si in BSA. The effects of E-field direction and operating temperature were also investigated. In the X-Y plane in the 0°-45° range, 15° from the X-direction was found to be the optimum direction for intercalation. The results of this work also suggest that BSA does not undergo drastic structural changes during the charging cycles with the highest operating temperature being ∼300 K.

Cite

CITATION STYLE

APA

Ahsan, S., Rauf, A., Taufique, M. F. N., Al Jame, H., Sarker, S., Nishat, S. S., … Ahmed, S. (2022). Feasibility study of Mg storage in a bilayer silicene anode via application of an external electric field. RSC Advances, 12(32), 20583–20598. https://doi.org/10.1039/d2ra02475f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free