Examining the Role of UAV Lidar Data in Improving Tree Volume Calculation Accuracy

15Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

Abstract

Traditional forest inventories are based on field surveys of established sample plots, which involve field measurements of individual trees within a sample plot and the selection of proper allometric equations for tree volume calculation. Thus, accurate field measurements and properly selected allometric equations are two crucial factors for providing high-quality tree volumes. One key problem is the difficulty in accurately acquiring tree height data, resulting in high uncertainty in tree volume calculation when the diameter at breast height (DBH) alone is used. This study examined the uncertainty of tree height measurements using different means and the impact of allometric models on tree volume estimation accuracy. Masson pine and eucalyptus plantations in Fujian Province, China, were selected as examples; their tree heights were measured three ways: using an 18-m telescopic pole, UAV Lidar (unmanned aerial vehicle, light detection and ranging) data, and direct measurement of felled trees, with the latest one as a reference. The DBH-based and DBH–height-based allometric equations corresponding to specific tree species were used for the calculations of tree volumes. The results show that (1) tree volumes calculated from the DBH-based models were lower than those from the DBH–height-based models. On average, tree volumes were underestimated by 0.018 m3 and 0.117 m3 for Masson pine and eucalyptus, respectively, while the relative root-mean-squared errors (RMSEr) were 24.04% and 33.90%, respectively, when using the DBH-based model; (2) the tree height extracted from UAV Lidar data was more accurate than that measured using a telescopic pole, because the pole measurement method generally underestimated the tree height, especially when the trees were taller than the length of the pole (18 m in our study); (3) the tree heights measured using different methods greatly impacted the accuracies of tree volumes calculated using the DBH–height model. The telescopic-pole-measured tree heights resulted in a relative error of 9.1–11.8% in tree volume calculations. This research implies that incorporation of UAV Lidar data with DBH field measurements can effectively improve tree volume estimation and could be a new direction for sample plot data collection in the future.

Cite

CITATION STYLE

APA

Liao, K., Li, Y., Zou, B., Li, D., & Lu, D. (2022). Examining the Role of UAV Lidar Data in Improving Tree Volume Calculation Accuracy. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174410

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free