LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma cells through miR-200a-3p/O-GlcNAc transferase pathway

7Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Osteosarcoma is highly malignant. The migration, invasion, and chemoresistance contribute to poor prognosis of osteosarcoma. Research reported that endogenous bornavirus-like nucleoprotein 3 pseudogene (EBLN3P) promotes the progression of osteosarcoma. Methods: In this study, the expression of EBLN3P in osteosarcoma tissue with different methotrexate (MTX) treatment responses was measured. Osteosarcoma cell lines with MTX resistance were constructed, and bioinformatic analysis was performed to explore the potential involved targets and pathways. Results: Higher EBLN3P was associated with MTX resistance. Downregulation of LncEBLN3P decreased the MTX resistance of osteosarcoma cells by sponging miR-200a-3p, an important microRNA that affects epithelial-mesenchymal transition (EMT). The decreased miR-200a-3p resulted in the upregulation of its target gene O-GlcNAc transferase (OGT), which in turn promoted the EMT process of osteosarcoma cells. Further analysis confirmed that the loss of OGT and over-expression of miR-200a-3p could partly abolish the MTX resistance induced by LncEBLN3P. Conclusion: LncEBLN3P is upregulated in osteosarcoma and increases the MTX resistance in osteosarcoma cells through downregulating miR-200a-3p, which in turn promoted the EMT process of osteosarcoma cells by increasing the OGT.

Cite

CITATION STYLE

APA

Sun, M. X., An, H. Y., Sun, Y. B., Sun, Y. bao, & Bai, B. (2022). LncRNA EBLN3P attributes methotrexate resistance in osteosarcoma cells through miR-200a-3p/O-GlcNAc transferase pathway. Journal of Orthopaedic Surgery and Research, 17(1). https://doi.org/10.1186/s13018-022-03449-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free