The expression and activity of glutamine synthetase (GS, EC 6.3.1.2) were examined in relation to the rate of CO2 assimilation in sunflower (Helianthus annuus L.) leaves. Intact plants were kept in the dark for 72 h and subsequently exposed to light under different atmospheric CO2 concentrations (100, 400 and 1200 μl l-1) for 6 h. The in vivo rates of net CO2 assimilation correlated with atmospheric CO 2 concentrations. Stomatal conductances and transpiration rates remained largely unaffected by CO2 levels. Exposure of the plants to increasing CO2 concentrations in the light caused concomitant increases in the contents of starch and soluble sugars and a decrease in the nitrate content in leaves. Both cytosolic and chloroplastic (GS2) GS activities were higher at elevated CO2. A greater accumulation of GS2 mRNA was also observed under high CO2. Exogenous supply of sucrose to detached leaves greatly increased the levels of GS enzyme activity and of mRNA for chloroplastic GS in the dark. These results indicate that GS expression and activity in sunflower leaves are modulated by the rate of CO2 assimilation, and that photosynthesized sugars are presumably involved as regulatory metabolites.
CITATION STYLE
Larios, B., Agüera, E., Cabello, P., Maldonado, J. M., & De La Haba, P. (2004). The rate of CO2 assimilation controls the expression and activity of glutamine synthetase through sugar formation in sunflower (Helianthus annuus L.) leaves. Journal of Experimental Botany, 55(394), 69–75. https://doi.org/10.1093/jxb/erh017
Mendeley helps you to discover research relevant for your work.