Characterization of a Double Cellulose-binding Domain

  • Linder M
  • Salovuori I
  • Ruohonen L
  • et al.
N/ACitations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Most cellulose-degrading enzymes have a two-domain structure that consists of a catalytic and a cellulose-binding domain (CBD) connected by a linker region. The linkage and the interactions of the two domains represent one of the key questions for the understanding of the function of these enzymes. The CBDs of fungal cellulases are small peptides folding into a rigid, disulfide-stabilized structure that has a distinct cellulose binding face. Here we describe properties of a recombinant double CBD, constructed by fusing the CBDs of two Trichoderma reesei cellobiohydrolases via a linker peptide similar to the natural cellulase linkers. After expression in Escherichia coli, the protein was purified from the culture medium by reversed phase chromatography and the individual domains obtained by trypsin digestion. Binding of the double CBD and its single CBD components was investigated on different types of cellulose substrates as well as chitin. Under saturating conditions, nearly 20 μmol/g of the double CBD was bound onto microcrystalline cellulose. The double CBD exhibited much higher affinity on cellulose than either of the single CBDs, indicating an interplay between the two components. A two-step model is proposed to explain the binding behavior of the double CBD. A similar interplay between the domains in the native enzyme is suggested for its binding to cellulase.

Cite

CITATION STYLE

APA

Linder, M., Salovuori, I., Ruohonen, L., & Teeri, T. T. (1996). Characterization of a Double Cellulose-binding Domain. Journal of Biological Chemistry, 271(35), 21268–21272. https://doi.org/10.1074/jbc.271.35.21268

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free