Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials

3Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients’ tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.

Cite

CITATION STYLE

APA

Peehl, D. M., Badea, C. T., Chenevert, T. L., Daldrup-Link, H. E., Ding, L., Dobrolecki, L. E., … Zhou, R. (2023, April 1). Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials. Tomography. MDPI. https://doi.org/10.3390/tomography9020053

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free