Landscapes display overlapping sets of correlations in different regions at different spatial scales, and these correlations can be delineated by pattern analysis. This study identified the correlations between landscape pattern and topography at various scales and locations in urban-rural profiles from Jilin City, China, using Pearson correlation analysis and wavelet method. Two profiles, 30 km (A) and 35 km (B) in length with 0.1-km sampling intervals, were selected. The results indicated that profile A was more sensitive to the characterization of the land use pattern as influenced by topography due to its more varied terrain, and three scales (small, medium, and large) could be defined based on the variation in the standard deviation of the wavelet coherency in profile A. Correlations between landscape metrics and elevation were similar at large scales (over 8 km), while complex correlations were discovered at other scale intervals. The medium scale of cohesion and Shannon's diversity index was 1-8 km, while those of perimeter-area fractal dimension and edge density index were 1.5-8 km and 2-8 km, respectively. At small scales, the correlations were weak as a whole and scattered due to the micro-topography and landform elements, such as valleys and hillsides. At medium scales, the correlations were most affected by local topography, and the land use pattern was significantly correlated with topography at several locations. At large spatial scales, significant correlation existed throughout the study area due to alternating mountains and plains. In general, the strength of correlation between landscape metrics and topography increased gradually with increasing spatial scale, although this tendency had some fluctuations in several locations. Despite a complex calculating process and ecological interpretation, the wavelet method is still an effective tool to identify multi-scale characteristics in landscape ecology.
CITATION STYLE
Wu, Q., Guo, F., & Li, H. (2018). Wavelet-based correlation identification of scales and locations between landscape patterns and topography in urban-rural profiles: Case of the Jilin City, China. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101653
Mendeley helps you to discover research relevant for your work.