• Changes in soil properties and microbial communities regulated rhizosphere protistan assemblages. • Bacterial community was more sensitive to soil amendments than protists and fungi. • Soil amendments trigger the role of specific protistan taxa Cercozoa on microbial interactions. Understanding the responses of different rhizosphere microbial lineages to soil amendments during in situ remediation of Cd-contaminated soil is of great importance in the assessment of the restoration and crop health. Here, we evaluated the effects of lime (LM), biochar (BC), pig manure (PM), and a commercial Mg-Ca-Si conditioner (CMC) on the rice rhizosphere soil physicochemical properties and community assembly of bacteria, fungi, and protists in a six-year consecutive application of soil amendments field trial. Our results indicated that among the four amendments, the BC and CMC had the best efficiency in increasing soil pH, which were 5.2% and 16.2%, respectively. Despite the differences in soil Cd concentrations is not noticeable, all the soil amendment treatments significantly decreased the proportion of available Cd in total Cd compared to the control. Soil amendments significantly altered the diversity of bacterial community, while they had no effect on fungal and protistan communities. Linear discriminant analysis effect size (LEfSe) showed that the bacteria was more sensitive to soil amendment-induced changes. For protists, treatments with LM and BC changed the groups of protistan consumers, while treatments with PM and CMC significantly increased the relative abundances of protistan phototrophs. Co-occurrence network analysis revealed that soil amendments increased microbial network complexity and triggered the role of protists, especially for the predatory protists Cercozoa, on microbial trophic interactions. Further variation partitioning analysis revealed that edaphic properties, bacterial and fungal communities compositions together explained the 77% of the total variation in protistan community, and the stronger correlations between diversity of bacterial and protistan communities suggested that the bacteria community was a more important biotic driver of the protistan community. Overall, our findings demonstrate the distinct responses of rice rhizosphere microbial communities to soil amendment applications, highlighting the interactive associations between microbiomes, which is vital for enhancing our ability to develop effective strategies for sustainable soil management. This study enhances our understanding of the ecological roles of protists under soil amendment applications and highlights their potential contributions in bioremediation and environmental applications for Cd-contaminated soil.[Figure not available: see fulltext.].
CITATION STYLE
Cheng, Z., Han, Q., He, Y., Shi, J., Wu, L., & Xu, J. (2024). Contrasting response of rice rhizosphere microbiomes to in situ cadmium-contaminated soil remediation. Soil Ecology Letters, 6(2). https://doi.org/10.1007/s42832-023-0203-5
Mendeley helps you to discover research relevant for your work.