Numerical Study of Combined Drag Reduction Bases on Vortex Generators and Riblets for the Ahmed Body using IDDES Methodology

7Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

The flow fields around vehicle drag reduction devices are three-dimensional, complicated, and unsteady. Meanwhile, the small scale of the drag reduction device brings more challenges to the simulation. An Improved Delayed Detached Eddy Simulation (IDDES) was applied to study the effect of two types of drag reduction device. First, the flow field of an Ahmed body at a 25° slant was simulated in detail using IDDES and verified by experiment data. Afterwards, the flow field structures of adding-on vortex generators (VGs) and riblets on the rear and slant surface of the Ahmed body were studied. The simulation results of the velocity, pressure and vortex structure on the controlled case are presented by comparing with the baseline model to illustrate the drag reduction mechanism. The two drag-reduction devices had different flow mechanisms and significantly affected the development of the separation vortex near the rear and slanted surface. A maximum drag reduction of 6.21% could be achieved using VGs on the rear surface. Finally, four combinations of those two devices were investigated. The results demonstrated that suitable combinations can further decrease the aerodynamic drag, and an 8.62% drag reduction is achieved.

Cite

CITATION STYLE

APA

Yang, X., Hu, Y., Gong, Z., Jian, J., & Liu, Z. (2022). Numerical Study of Combined Drag Reduction Bases on Vortex Generators and Riblets for the Ahmed Body using IDDES Methodology. Journal of Applied Fluid Mechanics, 15(1), 193–207. https://doi.org/10.47176/jafm.15.01.32832

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free