A two-dimensional simulation code is used to study the characteristics of constant-depth zigzag manoeuvres of the axisymmetric autonomous underwater vehicle (AUV) MUN Explorer. Sea trials data for several manoeuvres with the AUV have been reported during the past four years; however, to obtain a more complete understanding of the vehicle's hydrodynamics, additional towing tank tests and computer simulation were performed. The present work, based on the towing tank test results and sea-trials data, utilizes computer simulations to predict the performance of the MUN Explorer AUV during horizontal zigzag manoeuvres. Next, the Nomoto indices for this AUV during constant-depth zigzag manoeuvres are estimated using the simulation results, and, then, Nomoto's first-order model for the rate of turn of the vehicle during horizontal zigzag manoeuvres in response to a square-wave input for the rudder deflection angle is analytically solved. The paper investigates the validity of the simplified yaw equation to predict a zigzag manoeuvre. Results of this research are a first step to understand the details of zigzag manoeuvres of an AUV such as duration of the first execute, yaw-checking ability, and duration of the overshoot.
CITATION STYLE
Azarsina, F., & Williams, C. D. (2013). Nomoto Indices for Constant-Depth Zigzag Manoeuvres of an Autonomous Underwater Vehicle. ISRN Oceanography, 2013, 1–8. https://doi.org/10.5402/2013/219545
Mendeley helps you to discover research relevant for your work.