Towards Energy Efficient Mobile Wireless Receivers above 100 GHz

22Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Wireless communication above 100 GHz offers the potential for massive data rates and has attracted considerable attention for Beyond 5G and 6G systems. A key challenge in the receiver design in these bands is power consumption, particularly for mobile and portable devices. This paper provides a general methodology for understanding the trade-offs of power consumption and end-to-end performance of a large class of potential receivers for these frequencies. The framework is applied to the design of a fully digital 140 GHz receiver with a 2 GHz sample rate, targeted for likely 6G cellular applications. Design options are developed for key RF components including the low noise amplifier (LNA), mixer, local oscillator (LO) and analog-digital converter (ADC) in 90 nm SiGe BiCMOS. The proposed framework, combined with detailed circuit and system simulations, is then used to select among the design options for the overall optimal end-to-end performance and power tradeoff. The analysis reveals critical design choices and bottlenecks. It is shown that optimizing these critical components can enable a dramatic 70 to 80% power reduction relative to a standard baseline design enabling fully-digital 140 GHz receivers with RF power consumption less than 2 W.

Cite

CITATION STYLE

APA

Skrimponis, P., Hosseinzadeh, N., Khalili, A., Erkip, E., Rodwell, M. J. W., Buckwalter, J. F., & Rangan, S. (2021). Towards Energy Efficient Mobile Wireless Receivers above 100 GHz. IEEE Access, 9, 20704–20716. https://doi.org/10.1109/ACCESS.2020.3044849

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free