An optical system via liquid crystal photonic devices for photobiomodulation

12Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Photobiomodulation or low-level light therapy (LLLT) has extensive applications based on light-induced effects in biological systems. Photobiomodulation remains controversial because of a poorly understood biochemical mechanism limited by the well-known biphasic dose response or Arndt-Schulz curve. The Arndt-Schulz curve states that an optimal dose of light is a key factor for realizing a therapeutic effect. In this report, we demonstrate a tunable optical system for photobiomodulation to aid physicians in overcoming the constraints of light due to biphasic dose response. The tunable optical system is based on a white light-emitting diode and four liquid crystal (LC) photonic devices: three LC phase retarders, and one LC lens. The output light of the tunable optical system exhibits electrical tunability for the wavelength, energy density and beam size. The operating principle is introduced, and the experimental results are presented. The proposed concept can be further extended to other electrically tunable photonic devices for different clinical purposes for photobiomodulation.

Cite

CITATION STYLE

APA

Chang, C. M., Lin, Y. H., Srivastava, A. K., & Chigrinov, V. G. (2018). An optical system via liquid crystal photonic devices for photobiomodulation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-22634-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free