Spectral Approach to Plasma Kinetic Simulations Based on Hermite Decomposition in the Velocity Space

16Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

Spectral (transform) methods for solution of Vlasov-Maxwell system have shown significant promise as numerical methods capable of efficiently treating fluid-kinetic coupling in magnetized plasmas. We discuss SpectralPlasmaSolver (SPS), an implementation of three-dimensional, fully electromagnetic algorithm based on a decomposition of the plasma distribution function in Hermite modes in velocity space and Fourier modes in physical space. A fully-implicit time discretization is adopted for numerical stability and to ensure exact conservation laws for total mass, momentum and energy. The SPS code is parallelized using Message Passing Interface for distributed memory architectures. Application of the method to analysis of kinetic range of scales in plasma turbulence under conditions typical of the solar wind is demonstrated. With only 4 Hermite modes per velocity dimension, the algorithm yields damping rates of kinetic Alfvén waves with accuracy of 50% or better, which is sufficient to obtain a model of kinetic scales capable of reproducing many of the expected statistical properties of turbulent fluctuations. With increasing number of Hermite modes, progressively more accurate values for collisionless damping rates are obtained. Fully nonlinear simulations of decaying turbulence are presented and successfully compared with similar simulations performed using Particle-In-Cell method.

Cite

CITATION STYLE

APA

Roytershteyn, V., & Delzanno, G. L. (2018). Spectral Approach to Plasma Kinetic Simulations Based on Hermite Decomposition in the Velocity Space. Frontiers in Astronomy and Space Sciences, 5. https://doi.org/10.3389/fspas.2018.00027

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free