Polyploid giant cancer cells (PGCC) constitute a transiently senescent subpopulation of cancer cells that arises in response to stress. PGCC are capable of generating progeny via a primitive, cleavage-like cell division that is dependent on the sphingolipid enzyme acid ceramidase (ASAH1). The goal of this study was to understand differences in sphingolipid metabolism between non-polyploid and polyploid cancer cells to gain an understanding of the ASAH1-dependence in the PGCC population. Steady-state and flux analysis of sphingolipids did not support our initial hypothesis that the ASAH1 product sphingosine is rapidly converted into the pro-survival lipid sphingosine-1-phosphate. Instead, our results suggest that ASAH1 activity is important for preventing the accumulation of long chain ceramides such as C16-ceramide. We therefore determined how modulation of C16-ceramide, either through CerS6 or p53, a known PGCC suppressor and enhancer of CerS6-derived C16-ceramide, affected PGCC progeny formation. Co-expression of the CerS6 and p53 abrogated the ability of PGCC to form offspring, suggesting that the two genes form a positive feedback loop. CerS6 enhanced the effect of p53 by significantly increasing protein half-life. Our results support the idea that sphingolipid metabolism is of functional importance in PGCC and that targeting this signaling pathway has potential for clinical intervention.
CITATION STYLE
Lu, P., White-Gilbertson, S., Beeson, G., Beeson, C., Ogretmen, B., Norris, J., & Voelkel-Johnson, C. (2021). Ceramide synthase 6 maximizes p53 function to prevent progeny formation from polyploid giant cancer cells. Cancers, 13(9). https://doi.org/10.3390/cancers13092212
Mendeley helps you to discover research relevant for your work.