Parsec-scale properties of the radio brightest jetted AGN at z > 6

37Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

We present Director's Discretionary Time multi-frequency observations obtained with the Jansky Very Large Array and the Very Long Baseline Array (VLBA) of the blazar PSO J030947.49+271757.31 (hereafter PSO J0309+27) at z  =  6.10  ±  0.03. The milliarcsecond angular resolution of our VLBA observations at 1.5, 5, and 8.4 GHz unveils a bright one-sided jet extended for ∼500 parsecs in projection. This high-z radio-loud active galactic nucleus is resolved into multiple compact sub-components that are embedded in a more diffuse and faint radio emission that enshrouds them in a continuous jet structure. We directly derive limits on some physical parameters from observable quantities such as viewing angle and Lorentz and Doppler factors. If PSO J0309+27 is a genuine blazar, as suggested by its X-ray properties, then we find that its bulk Lorentz factor must be relatively low (lower than 5). This value would be in favour of a scenario currently proposed to reconcile the paucity of high-z blazars with current predictions. Nevertheless, we cannot exclude that PSO J0309+27 is seen under a larger viewing angle, which would imply that the X-ray emission must be enhanced, for example, by inverse Compton scattering with the cosmic microwave background. More stringent constraints on the bulk Lorentz factor in PSO J0309+27 and on these factors in the other high-z blazars are necessary to test whether their properties are intrinsically different from those of the low-z blazar population.

Cite

CITATION STYLE

APA

Spingola, C., Dallacasa, D., Belladitta, S., Caccianiga, A., Giroletti, M., Moretti, A., & Orienti, M. (2020). Parsec-scale properties of the radio brightest jetted AGN at z > 6. Astronomy and Astrophysics, 643. https://doi.org/10.1051/0004-6361/202039458

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free