Reliable route selection for wireless sensor networks with connection failure uncertainties

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

For wireless sensor networks (WSN) with connection failure uncertainties, traditional minimum spanning trees are no longer a feasible option for selecting routes. Reliability should come first before cost since no one wants a network that cannot work most of the time. First, reliable route selection for WSNs with connection failure uncertainties is formulated by considering the top-k most reliable spanning trees (RST) from graphs with structural uncertainties. The reliable spanning trees are defined as a set of spanning trees with top reliabilities and limited tree weights based on the possible world model. Second, two tree-filtering algorithms are proposed: the k minimum spanning tree (KMST) based tree-filtering algorithm and the depth-first search (DFS) based tree-filtering algorithm. Tree-filtering strategy filters the candidate RSTs generated by tree enumeration with explicit weight thresholds and implicit reliability thresholds. Third, an innovative edge-filtering method is presented in which edge combinations that act as upper bounds for RST reliabilities are utilized to filter the RST candidates and to prune search spaces. Optimization strategies are also proposed for improving pruning capabilities further and for enhancing computations. Extensive experiments are conducted to show the effectiveness and efficiency of the proposed algorithms.

Cite

CITATION STYLE

APA

Lyu, J., Ren, Y., Abbas, Z., & Zhang, B. (2021). Reliable route selection for wireless sensor networks with connection failure uncertainties. Sensors, 21(21). https://doi.org/10.3390/s21217254

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free