Electroencephalogram-based single-trial detection of language expectation violations in listening to speech

11Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

Abstract

We propose an approach for the detection of language expectation violations that occur in communication. We examined semantic and syntactic violations from electroencephalogram (EEG) when participants listened to spoken sentences. Previous studies have shown that such event-related potential (ERP) components as N400 and the late positivity (P600) are evoked in the auditory where semantic and syntactic anomalies occur. We used this knowledge to detect language expectation violation from single-trial EEGs by machine learning techniques. We recorded the brain activity of 18 participants while they listened to sentences that contained semantic and syntactic anomalies and identified the significant main effects of these anomalies in the ERP components. We also found that a multilayer perceptron achieved 59.5% (semantic) and 57.7% (syntactic) accuracies.

Cite

CITATION STYLE

APA

Tanaka, H., Watanabe, H., Maki, H., Sakriani, S., & Nakamura, S. (2019). Electroencephalogram-based single-trial detection of language expectation violations in listening to speech. Frontiers in Computational Neuroscience, 13. https://doi.org/10.3389/fncom.2019.00015

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free