The kinetics, degradation mechanism and degradation pathways of atrazine (ATZ) during sole-UV and UV/H2O2 processes under various pH conditions were investigated; the effects of UV irradiation time and H2O2 dose were also evaluated. A higher reaction rate was observed under neutral pH conditions in the UV only process. For the UV/H2O2 process, a higher reaction rate was observed in acidic solution and the degradation rate of ATZ firstly increased with the increase of concentration of H2O2 and then decreased when H2O2 concentration exceeded 5 mg L-1. In addition, qualitative and quantitative analyses of oxidation intermediates of ATZ in aqueous solution during the sole-UV and UV/H2O2 processes were conducted using UPLC-ESI-MS/MS. Ten kinds of dechlorinated intermediates were detected during sole-UV treatment under all five pH conditions. In contrast, the speciation of intermediates in the UV/H2O2 process varied dramatically with solution pH. Based on the analysis of ATZ oxidation intermediates, ATZ degradation pathways under different pH conditions were proposed for the sole-UV and UV/H2O2 processes. The results showed that the main degradation reactions of ATZ included dechlorination-hydroxylation, dechlorination-dealkylation, de-alkylation, deamination-hydroxylation, alkylic-oxidation of lateral chains, dehydrogenation-olefination, dechlorination-hydrogenation, dechlorination-methoxylation and dehydroxylation.
CITATION STYLE
Liu, Y., Zhu, K., Su, M., Zhu, H., Lu, J., Wang, Y., … Zhang, Y. (2019). Influence of solution pH on degradation of atrazine during UV and UV/H2O2 oxidation: Kinetics, mechanism, and degradation pathways. RSC Advances, 9(61), 35847–35861. https://doi.org/10.1039/c9ra05747a
Mendeley helps you to discover research relevant for your work.