Ezrin regulates ca2+ ionophore-induced plasma membrane translocation of aquaporin-5

7Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, sweat, and submucosal airway glands, and plays important roles in maintaining their secretory functions. Because AQP5 is not regulated by gating, localization on the plasma membrane is important for its water-permeable function. Ezrin is an ezrin–radixin–moesin family protein that serves as a crosslinker between the plasma membrane and actin cytoskeleton network. It plays important roles in translocation of various membrane proteins to mediate vesicle trafficking to the plasma membrane. In this study, we examined the effects of ezrin inhibition on membrane trafficking of AQP5. Ezrin inhibition selectively suppressed an ionomycin-induced increase in AQP5 translocation to the plasma membrane of mouse lung epithelial cells (MLE-12) without affecting the steady-state level of plasma membrane AQP5. Taken together, our data suggest that AQP5 translocates to the plasma membrane through at least two pathways and that ezrin is selectively involved in a stimulation-dependent pathway.

Cite

CITATION STYLE

APA

Muroi, S. I., & Isohama, Y. (2021). Ezrin regulates ca2+ ionophore-induced plasma membrane translocation of aquaporin-5. International Journal of Molecular Sciences, 22(24). https://doi.org/10.3390/ijms222413505

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free