Screening and identification of yeasts from fruits and their coculture for cider production

7Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

Coculturing non-Saccharomyces yeasts with Saccharomyces cerevisiae could enrich the aromatic complexity of alcoholic beverages during cider brewing. Therefore, the present study performed rapid strain screening via selective culture medium and aroma analysis and adopted a response surface methodology to optimize fermentation conditions to produce 2-phenylethyl acetate (PEA), which presents a rose and honey scent. The effects of coculturing yeasts on cider quality were evaluated through hedonic sensory analysis and the check-all-that-apply (CATA) method. Hanseniaspora vineae P5 and S. cerevisiae P1 produced ciders with high levels of PEA and 2-phenylethanol, respectively. The optimal fermentation process consisted of sequential inoculation with a 31 h delay between inoculations, followed by fermentation for 14.5 d at 18.7◦C, yielding 17.41 ± 0.51 mg/L of PEA, which was 4.6-fold higher than that obtained through the unoptimized fermentation process. Additionally, the CATA results revealed that the cider produced through coculturing was associated with descriptors such as “smooth taste”, “honey”, “pineapple”, and “fruity”, which can be attributed to the high ethyl acetate and PEA levels in the cider.

Cite

CITATION STYLE

APA

Hou, C. Y., Huang, P. H., Lai, Y. T., Lin, S. P., Liou, B. K., Lin, H. W., … Cheng, K. C. (2022). Screening and identification of yeasts from fruits and their coculture for cider production. Fermentation, 8(1). https://doi.org/10.3390/fermentation8010001

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free