Background: Wearable devices have evolved as screening tools for atrial fibrillation (AF). A photoplethysmographic (PPG) AF detection algorithm was developed and applied to a convenient smartphone-based device with good accuracy. However, patients with paroxysmal AF frequently exhibit premature atrial complexes (PACs), which result in poor unmanned AF detection, mainly because of rule-based or handcrafted machine learning techniques that are limited in terms of diagnostic accuracy and reliability. Objective: This study aimed to develop deep learning (DL) classifiers using PPG data to detect AF from the sinus rhythm (SR) in the presence of PACs after successful cardioversion. Methods: We examined 75 patients with AF who underwent successful elective direct-current cardioversion (DCC). Electrocardiogram and pulse oximetry data over a 15-min period were obtained before and after DCC and labeled as AF or SR. A 1-dimensional convolutional neural network (1D-CNN) and recurrent neural network (RNN) were chosen as the 2 DL architectures. The PAC indicator estimated the burden of PACs on the PPG dataset. We defined a metric called the confidence level (CL) of AF or SR diagnosis and compared the CLs of true and false diagnoses. We also compared the diagnostic performance of 1D-CNN and RNN with previously developed AF detectors (support vector machine with root-mean-square of successive difference of RR intervals and Shannon entropy, autocorrelation, and ensemble by combining 2 previous methods) using 10 5-fold cross-validation processes. Results: Among the 14,298 training samples containing PPG data, 7157 samples were obtained during the post-DCC period. The PAC indicator estimated 29.79% (2132/7157) of post-DCC samples had PACs. The diagnostic accuracy of AF versus SR was 99.32% (70,925/71,410) versus 95.85% (68,602/71,570) in 1D-CNN and 98.27% (70,176/71,410) versus 96.04% (68,736/71,570) in RNN methods. The area under receiver operating characteristic curves of the 2 DL classifiers was 0.998 (95% CI 0.995-1.000) for 1D-CNN and 0.996 (95% CI 0.993-0.998) for RNN, which were significantly higher than other AF detectors (P
CITATION STYLE
Kwon, S., Hong, J., Choi, E. K., Lee, E., Hostallero, D. E., Kang, W. J., … Yi, Y. (2019). Deep learning approaches to detect atrial fibrillation using photoplethysmographic signals: Algorithms development study. JMIR MHealth and UHealth, 7(6). https://doi.org/10.2196/12770
Mendeley helps you to discover research relevant for your work.