A highly efficient synthesis of oxygenated 5,5-spiroketals was performed towards the synthesis of the cephalosporolides. Gold(I) chloride in methanol induced the cycloisomerization of a protected alkyne triol with concomitant deprotection to give a strategically hydroxylated 5,5-spiroketal, despite the potential for regiochemical complications and elimination to furan. Other late transition metal Lewis acids were less effective. The use of methanol as solvent helped suppress the formation of the undesired furan by-product. This study provides yet another example of the advantages of gold catalysis in the activation of alkyne p-systems. © 2011 Tlais and Dudley; licensee Beilstein-Institut.
CITATION STYLE
Tlais, S. F., & Dudley, G. B. (2011). A gold-catalyzed alkyne-diol cycloisomerization for the synthesis of oxygenated 5,5-spiroketals. Beilstein Journal of Organic Chemistry, 7, 570–577. https://doi.org/10.3762/bjoc.7.66
Mendeley helps you to discover research relevant for your work.