Variational theory of angulons and their rotational spectroscopy

1Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The angulon, a quasiparticle formed by a quantum rotor dressed by the excitations of a many-body bath, can be used to describe an impurity rotating in a fluid or solid environment. Here, we propose a coherent state ansatz in the co-rotating frame, which provides a comprehensive theoretical description of angulons. We reveal the quasiparticle properties, such as energies, quasiparticle weights, and spectral functions, and show that our ansatz yields a persistent decrease in the impurity's rotational constant due to many-body dressing, which is consistent with experimental observations. From our study, a picture of the angulon emerges as an effective spin interacting with a magnetic field that is self-consistently generated by the molecule's rotation. Moreover, we discuss rotational spectroscopy, which focuses on the response of rotating molecules to a laser perturbation in the linear response regime. Importantly, we take into account initial-state interactions that have been neglected in prior studies and reveal their impact on the excitation spectrum. To examine the angulon instability regime, we use a single-excitation ansatz and obtain results consistent with experiments, in which a broadening of spectral lines is observed while phonon wings remain highly suppressed due to initial-state interactions.

Cite

CITATION STYLE

APA

Zeng, Z., Yakaboylu, E., Lemeshko, M., Shi, T., & Schmidt, R. (2023). Variational theory of angulons and their rotational spectroscopy. Journal of Chemical Physics, 158(13). https://doi.org/10.1063/5.0135893

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free