A Computationally Efficient State Space Approach to Estimating Multilevel Regression Models and Multilevel Confirmatory Factor Models

8Citations
Citations of this article
38Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although the state space approach for estimating multilevel regression models has been well established for decades in the time series literature, it does not receive much attention from educational and psychological researchers. In this article, we (a) introduce the state space approach for estimating multilevel regression models and (b) extend the state space approach for estimating multilevel factor models. A brief outline of the state space formulation is provided and then state space forms for univariate and multivariate multilevel regression models, and a multilevel confirmatory factor model, are illustrated. The utility of the state space approach is demonstrated with either a simulated or real example for each multilevel model. It is concluded that the results from the state space approach are essentially identical to those from specialized multilevel regression modeling and structural equation modeling software. More importantly, the state space approach offers researchers a computationally more efficient alternative to fit multilevel regression models with a large number of Level 1 units within each Level 2 unit or a large number of observations on each subject in a longitudinal study. © 2014 Copyright Taylor & Francis Group, LLC.

Cite

CITATION STYLE

APA

Gu, F., Preacher, K. J., Wu, W., & Yung, Y. F. (2014). A Computationally Efficient State Space Approach to Estimating Multilevel Regression Models and Multilevel Confirmatory Factor Models. Multivariate Behavioral Research, 49(2), 119–129. https://doi.org/10.1080/00273171.2013.866537

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free