Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA)

77Citations
Citations of this article
120Readers
Mendeley users who have this article in their library.

Abstract

Papua New Guinea is blessed with a plethora of enviable natural resources, but at the same time it is also cursed by quite a few natural disasters like volcanic eruptions, earthquakes, landslide, floods, droughts etc. Floods happen to be a natural process of maintaining the health of the rivers and depth of its thalweg; it saves the river from becoming morbid while toning up the fertility of the riverine landscape. At the same time, from human perspective, all these ecological goodies are nullified when flood is construed overwhelmingly as one of the most devastating events in respect to social and economic consequences. The present investigation was tailored to assess the use of multi-criteria decision approach (MCDA) in inland flood risk analysis. Categorization of possible flood risk zones was accomplished using geospatial data sets, like elevation, slope, distance to river, and land use/land cover, which were derived from digital elevation model (DEM) and satellite image, respectively. A pilot study area was selected in the lower part of Markham River in Morobe Province, Papua New Guinea. The study area is bounded by 146°31' to 146°58' east and 6°33' to 6°46' south; covers an area of 758.30 km2. The validation of a flood hazard risk map was carried out using past flood records in the study area. This result suggests that MCDA within GIS techniques is very useful in accurate and reliable flood risk analysis and mapping. This approach is convenient for the assessment of flood in any region, specifically in no-data regions, and can be useful for researchers and planners in flood mitigation strategies.

Cite

CITATION STYLE

APA

Samanta, S., Koloa, C., Pal, D. K., & Palsamanta, B. (2016). Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA). Hydrology, 3(3). https://doi.org/10.3390/hydrology3030029

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free