The Hydrostatic Pressure Machine (HPM) is a novel energy converter for micro and pico hydropower that becomes very suitable for installation in channels with very low head, where conventional hydraulic turbines are inadequate or too expensive. Although this technology has been studied through several experimental tests and also by numerical simulations, open source flow solvers have not been used yet. The research team on Computational Fluid Mechanics of IMFIAUniversidad de la República (Uruguay) has been developing a CFD open source solver named caffa3d, which has obtained great results in a few international challenges, although it has not been used yet for free surface flows or turbomachinery simulations. The present work shows the contributions made within caffa3d in order to enable its use for simulating a HPM. The Large Eddy Simulation (LES) method is used to model the turbulence structures of the flow. Sliding Mesh (SM) and Volume of Fluid (VOF) methods were chosen respectively to resolve the rotation of the wheel and the position of the free surface. The SM module was already validated in the past, but the VOF module needed to be validated in the present work through the simulation of free surface over a semicylindrical dam. Finally, the performance of a small 12-straight-blade HPM was simulated with caffa3d, with quite satisfactory results. Some issues of the solver yet need to be solved before other HPM with more complex designs could be studied.
CITATION STYLE
Pienika, R., Usera, G., & Ramos, H. M. (2020). Simulation of a hydrostatic pressure machine with caffa3d solver: Numerical model characterization and evaluation. Water (Switzerland), 12(9). https://doi.org/10.3390/w12092419
Mendeley helps you to discover research relevant for your work.