Observations were made of absorption from CH, C2, and CN toward moderately reddened stars in Sco, OB2, Ceo OB3, and Taurus/Auriga. For these directions, most of the reddening is associated with a single cloud complex, for example, the rho Ophiuchus molecular cloud, and as a result, the observations probe moderately dense material. When combined with avaliable data for nearby directions, the survey provides the basis for a comprehensive analysis of the chemistry for these species. The chemical transitions affecting C2 and CN in cloud envelopes were analyzed. The depth into a cloud at which a transition takes place was characterized by tauuv, the grain optical depth at 1000 A. One transition at tauuv approx. = 2, which arises from, the conversion of C(+) into CO, affects the chemistries for both molecules because of the key role this ion plays. A second one involving production terms in the CN chemistry occurs at tauuv of approx. = 3; neutral reactions which C2 and CH is more important at larger values for tauuv. The transition from photodissociation to chemical destruction takes place at tauuv approx. = 4.5 for C2 and CN. The observational data for stars in Sco OB2, Cep OB3, and Taurus/Auriga were studied with chemical rate equations containing the most important production and destruction mechanisms. Because the sample of stars in Sco OB2 includes sight lines with Av ranging from 1-4 mag, sight lines dominated by photochemistry could be analyzed separately from those controlled by gas-phase destruction. The analysis yielded values for two poorly known rate constants for reactions involved in the production of CN; the reactions are C2 + N yields CN + C and C(+) + NH yields all products. The other directions were analyzed with the inferred values. The predicted column densities for C2 and CN agree with the observed values to better than 50%, and in most instances 20%. When combining the estimates for density and temperature derived from chemical modeling and molecular excitation for a specific cloud, such as the rho Ophiuchus molecular cloud, the portion of the cloud envelope probed by C2 and CN absorption was found to be in pressure equilibrium.
CITATION STYLE
Federman, S. R., Strom, C. J., Lambert, D. L., Cardelli, J. A., Smith, V. V., & Joseph, C. L. (1994). Chemical transitions for interstellar C2 and CN in cloud envelopes. The Astrophysical Journal, 424, 772. https://doi.org/10.1086/173930
Mendeley helps you to discover research relevant for your work.