Robust evolutionary bi-objective optimization for prostate cancer treatment with high-dose-rate brachytherapy

2Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We address the real-world problem of automating the design of high-quality prostate cancer treatment plans in case of high-dose-rate brachytherapy, a form of internal radiotherapy. For this, recently a bi-objective real-valued problem formulation was introduced. With a GPU parallelization of the Multi-Objective Real-Valued Gene-pool Optimal Mixing Evolutionary Algorithm (MO-RV-GOMEA), good treatment plans were found in clinically acceptable running times. However, optimizing a treatment plan and delivering it to the patient in practice is a two-stage decision process and involves a number of uncertainties. Firstly, there is uncertainty in the identified organ boundaries due to the limited resolution of the medical images. Secondly, the treatment involves placing catheters inside the patient, which always end up (slightly) different from what was optimized. An important factor is therefore the robustness of the final treatment plan to these uncertainties. In this work, we show how we can extend the evolutionary optimization approach to find robust plans using multiple scenarios without linearly increasing the amount of required computation effort, as well as how to deal with these uncertainties efficiently when taking into account the sequential decision-making moments. The performance is tested on three real-world patient cases. We find that MO-RV-GOMEA is equally well capable of solving the more complex robust problem formulation, resulting in a more realistic reflection of the treatment plan qualities.

Cite

CITATION STYLE

APA

van der Meer, M. C., Bel, A., Niatsetski, Y., Alderliesten, T., Pieters, B. R., & Bosman, P. A. N. (2020). Robust evolutionary bi-objective optimization for prostate cancer treatment with high-dose-rate brachytherapy. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 12270 LNCS, pp. 441–453). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-58115-2_31

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free