Obesity complicates sepsis and increases the mortality of sepsis. We examined the effects of exosomes (from human placenta choriodecidual membrane-derived mesenchymal stem cells, pcM-SCs) on preventing sepsis in obesity and the mitigating role of hsa-let-7i-5p microRNA. Obese mice (adult male C57BL/6J mice fed a high-fat diet for 12 weeks) received normal saline (HFD), endotoxin (10 mg/kg, intraperitoneal (ip); HFDLPS), endotoxin with exosomes (1 × 108 particles/mouse, ip; HLE), or endotoxin with let-7i-5p microRNA inhibitor-pretreated exosomes (1 × 108 particles/mouse, ip; HLEi). Our data demonstrated that the 48-h survival rate in the HLE (100%) group was significantly higher than in the HFDLPS (50%) and HLEi (58.3%) groups (both p < 0.05). In the sur-viving mice, by contrast, levels of liver injury (injury score, plasma aspartate transaminase and alanine transaminase concentrations, tissue water content, and leukocyte infiltration in liver tis-sues; all p < 0.05), inflammation (nuclear factor-κB activation, hypoxia-inducible factor-1α activation, macrophage activation, and concentrations of tumor necrosis factor-α, interleukin-6, and leptin in liver tissues; all p < 0.05), and oxidation (malondialdehyde in liver tissues, with p < 0.001) in the HLE group were significantly lower than in the HFDLPS group. Levels of mitochondrial in-jury/dysfunction and apoptosis in liver tissues in the HLE group were also significantly lower than in the HFDLPS group (all p < 0.05). Inhibition of let-7i-5p microRNA offset the effects of the exosomes, with most of the aforementioned measurements in the HLEi group being significantly higher than in the HLE group (all p < 0.05). In conclusion, exosomes mitigated endotoxin-induced mortality and liver injury in obese mice, and these effects were mediated by let-7i-5p microRNA.
CITATION STYLE
Chang, C. Y., Chen, K. Y., Shih, H. J., Chiang, M., Huang, I. T., Huang, Y. H., & Huang, C. J. (2022). Let-7i-5p mediates the therapeutic effects of exosomes from human placenta choriodecidual membrane-derived mesenchymal stem cells on mitigating endotoxin-induced mortality and liver injury in high-fat diet-induced obese mice. Pharmaceuticals, 15(1). https://doi.org/10.3390/ph15010036
Mendeley helps you to discover research relevant for your work.