Due to its large space-time variability, the wet tropospheric correction (WTC) is still considered a significant error source in satellite altimetry. This paper presents the GNSS (Global Navigation Satellite Systems) derived Path Delay Plus (GPD+), the most recent algorithm developed at the University of Porto to retrieve improved WTC for radar altimeter missions. The GPD+ are WTC estimated by space-time objective analysis, by combining all available observations in the vicinity of the point: valid measurements from the on-board microwave radiometer (MWR), from GNSS coastal and island stations and from scanning imaging MWR on board various remote sensing missions. The GPD+ corrections are available both for missions which do not possess an on-board microwave radiometer such as CryoSat-2 (CS-2) and for all missions which carry this sensor, by addressing the various error sources inherent to the MWR-derived WTC. To ensure long-term stability of the corrections, the large set of radiometers used in this study have been calibrated with respect to the Special Sensor Microwave Imager (SSM/I) and the SSM/I Sounder (SSM/IS). The application of the algorithm to CS-2 and Geosat Follow-on (GFO), as representative altimetric missions without and with a MWR aboard the respective spacecraft, is described. Results show that, for both missions, the newWTC significantly reduces the sea level anomaly (SLA) variance with respect to the model-based corrections. For GFO, the new WTC also leads to a large reduction in SLA variance with respect to the MWR-derived WTC, recovering a large number of observations in the coastal and polar regions and full sets of tracks and several cycles when MWR measurements are missing or invalid. Overall, the algorithm allows the recovery of a significant number of measurements, ensuring the continuity and consistency of the correction in the open-ocean/coastal transition zone and at high latitudes.
CITATION STYLE
Fernandes, M. J., & Lázaro, C. (2016). GPD+wet tropospheric corrections for CryoSat-2 and GFO altimetry missions. Remote Sensing, 8(10). https://doi.org/10.3390/rs8100851
Mendeley helps you to discover research relevant for your work.