The halophilic archaea (haloarchaea) live in saline environments which are found across the globe. In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature. However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously reported on. Therefore, we endeavored to determine the responses of the transcriptomes of three haloarchaea (Hla, Hvo, and NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 respond in a similar manner to each other as well as other prokaryotes when grown in an acidic environment, while the pattern for Hla was dissimilar. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria and had four-times more significantly regulated transcripts in common, compared to acidic growth. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to moving from an acidic to alkaline environment. Interestingly, our studies also showed that individual genes of multiple paralogous gene families ( tbp , tfb , orc / cdc6 , etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial bodies as well.
CITATION STYLE
Moran-Reyna, A., & Coker, J. A. (2014). The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000Research, 3, 168. https://doi.org/10.12688/f1000research.4789.1
Mendeley helps you to discover research relevant for your work.