Weakly supervised sequence tagging from noisy rules

71Citations
Citations of this article
89Readers
Mendeley users who have this article in their library.

Abstract

We propose a framework for training sequence tagging models with weak supervision consisting of multiple heuristic rules of unknown accuracy. In addition to supporting rules that vote on tags in the output sequence, we introduce a new type of weak supervision, called linking rules, that vote on how sequence elements should be grouped into spans with the same tag. These rules are an alternative to candidate span generators that require significantly more human effort. To estimate the accuracies of the rules and combine their conflicting outputs into training data, we introduce a new type of generative model, linked hidden Markov models (linked HMMs), and prove they are generically identifiable (up to a tag permutation) without any observed training labels. We find that linked HMMs provide an average 7 F1 point boost on benchmark named entity recognition tasks versus generative models that assume the tags are i.i.d. Further, neural sequence taggers trained with these structure-aware generative models outperform comparable state-of-the-art approaches to weak supervision by an average of 2.6 F1 points.

Cite

CITATION STYLE

APA

Safranchik, E., Luo, S., & Bach, S. H. (2020). Weakly supervised sequence tagging from noisy rules. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (pp. 5570–5578). AAAI press. https://doi.org/10.1609/aaai.v34i04.6009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free