The exact factorization approach, originally developed for electron-nuclear dynamics, is extended to light-matter interactions within the dipole approximation. This allows for a Schrödinger equation for the photonic wavefunction, in which the potential contains exactly the effects on the photon field of its coupling to matter. We illustrate the formalism and potential for a two-level system representing the matter, coupled to an infinite number of photon modes in the Wigner-Weisskopf approximation, as well as to a single mode with various coupling strengths. Significant differences are found with the potential used in conventional approaches, especially for strong couplings. We discuss how our exact factorization approach for light-matter interactions can be used as a guideline to develop semiclassical trajectory methods for efficient simulations of light-matter dynamics.
CITATION STYLE
Hoffmann, N. M., Appel, H., Rubio, A., & Maitra, N. T. (2018). Light-matter interactions via the exact factorization approach. European Physical Journal B, 91(8). https://doi.org/10.1140/epjb/e2018-90177-6
Mendeley helps you to discover research relevant for your work.