The use of Wnt ligands for signaling between cells is a conserved feature of metazoan development. Activation of Wnt signal transduction pathways upon ligand binding can regulate diverse processes including cell proliferation, migration, polarity, differentiation and axon outgrowth. A 'canonical' Wnt signaling pathway has been elucidated in vertebrate and invertebrate model systems. In the canonical pathway, Wnt binding leads to the stabilization of the transcription factor beta-catenin, which enters the nucleus to regulate Wnt pathway target genes. However, Wnt binding also acts through beta-catenin-independent, noncanonical pathways, such as the planar cell polarity (PCP) pathway and a pathway involving Ca2+ signaling. This chapter examines our current understanding of Wnt signaling and Wnt-mediated processes in the nematode C. elegans. Like other species, the C. elegans genome encodes multiple genes for Wnt ligands (five) and Wnt receptors (four frizzleds, one Ryk/Derailed). Unlike vertebrates or Drosophila, the C. elegans genome encodes three beta-catenin genes, which appear to have distinct functions in Wnt signaling and cell adhesion. Canonical Wnt signaling clearly exists in C. elegans, utilizing the beta-catenin BAR-1. However, a noncanonical pathway utilizing the beta-catenin WRM-1 also exists, and to date a similar pathway has not been described in other species. Evidence for beta-catenin independent noncanonical Wnt signaling is currently limited. The role of Wnt signaling in over a dozen C. elegans developmental processes, including the regulation of cell fate, polarity and migration, is described.
CITATION STYLE
Eisenmann, D. M. (2005). Wnt signaling. WormBook : The Online Review of C. Elegans Biology. https://doi.org/10.1895/wormbook.1.7.1
Mendeley helps you to discover research relevant for your work.