Wnt signaling.

160Citations
Citations of this article
506Readers
Mendeley users who have this article in their library.

Abstract

The use of Wnt ligands for signaling between cells is a conserved feature of metazoan development. Activation of Wnt signal transduction pathways upon ligand binding can regulate diverse processes including cell proliferation, migration, polarity, differentiation and axon outgrowth. A 'canonical' Wnt signaling pathway has been elucidated in vertebrate and invertebrate model systems. In the canonical pathway, Wnt binding leads to the stabilization of the transcription factor beta-catenin, which enters the nucleus to regulate Wnt pathway target genes. However, Wnt binding also acts through beta-catenin-independent, noncanonical pathways, such as the planar cell polarity (PCP) pathway and a pathway involving Ca2+ signaling. This chapter examines our current understanding of Wnt signaling and Wnt-mediated processes in the nematode C. elegans. Like other species, the C. elegans genome encodes multiple genes for Wnt ligands (five) and Wnt receptors (four frizzleds, one Ryk/Derailed). Unlike vertebrates or Drosophila, the C. elegans genome encodes three beta-catenin genes, which appear to have distinct functions in Wnt signaling and cell adhesion. Canonical Wnt signaling clearly exists in C. elegans, utilizing the beta-catenin BAR-1. However, a noncanonical pathway utilizing the beta-catenin WRM-1 also exists, and to date a similar pathway has not been described in other species. Evidence for beta-catenin independent noncanonical Wnt signaling is currently limited. The role of Wnt signaling in over a dozen C. elegans developmental processes, including the regulation of cell fate, polarity and migration, is described.

Cite

CITATION STYLE

APA

Eisenmann, D. M. (2005). Wnt signaling. WormBook : The Online Review of C. Elegans Biology. https://doi.org/10.1895/wormbook.1.7.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free