STD: A Seasonal-Trend-Dispersion Decomposition of Time Series

26Citations
Citations of this article
44Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The decomposition of a time series is an essential task that helps to understand its very nature. It facilitates the analysis and forecasting of complex time series expressing various hidden components such as the trend, seasonal components, cyclic components and irregular fluctuations. Therefore, it is crucial in many fields for forecasting and decision-making processes. In recent years, many methods of time series decomposition have been developed, which extract and reveal different time series properties. Unfortunately, they neglect a very important property, i.e., time series variance. To deal with heteroscedasticity in time series, the method proposed in this work - a seasonal-trend-dispersion decomposition (STD) - extracts the trend, seasonal component and component related to the dispersion of the time series. We define STD decomposition in two ways: with and without an irregular component. We show how STD can be used for time series analysis and forecasting.

Cite

CITATION STYLE

APA

Dudek, G. (2023). STD: A Seasonal-Trend-Dispersion Decomposition of Time Series. IEEE Transactions on Knowledge and Data Engineering, 35(10), 10339–10350. https://doi.org/10.1109/TKDE.2023.3268125

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free