Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults

  • Johannesen J
  • Bi J
  • Jiang R
  • et al.
N/ACitations
Citations of this article
208Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background—With millisecond-level resolution, electroencephalographic (EEG) recording provides a sensitive tool to assay neural dynamics of human cognition. However, selection of EEG features used to answer experimental questions is typically determined machine learning was investigated as a computational framework for extracting the most relevant a priori . The utility of features from EEG data empirically. Methods—Schizophrenia (SZ; n = 40) and healthy community (HC; n = 12) subjects completed a Sternberg Working Memory Task (SWMT) during EEG recording. EEG was stages analyzed to extract 5 (theta1, theta2, alpha, beta, gamma) at 4 (baseline, encoding, retention, retrieval) and 3 scalp sites (frontal-Fz, central-Cz, occipital- frequenc y components processing Oz) separately for correctly and incorrectly answered trials. The 1-norm support vector machine (SVM) method was used to build EEG classifiers of SWMT trial accuracy (correct vs. incorrect; Model 1) and diagnosis (HC vs. SZ; Model 2). External validity of SVM models was examined in relation to neuropsychological test performance and diagnostic classification using conventional regression-based analyses. Results—SWMT performance was significantly reduced in SZ ( p < .001). Model 1 correctly classified trial accuracy at 84 % in HC, and at 74 % when cross-validated in SZ data. Frontal gamma at encoding and central theta at retention provided highest weightings, accounting for 76 % of variance in SWMT scores and 42 % variance in neuropsychological test performance across samples. Model 2 identified frontal theta at baseline and frontal alpha during retrieval as primary classifiers of diagnosis, providing 87 % classification accuracy as a discriminant function. Conclusions—EEG features derived by SVM are consistent with literature reports of gamma’s role in memory encoding, engagement of theta during memory retention, and elevated resting low-frequency activity in schizophrenia. Tests of model performance and cross-validation support the stability and generalizability of results, and utility of SVM as an analytic approach for EEG feature selection.

Cite

CITATION STYLE

APA

Johannesen, J. K., Bi, J., Jiang, R., Kenney, J. G., & Chen, C.-M. A. (2016). Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatric Electrophysiology, 2(1). https://doi.org/10.1186/s40810-016-0017-0

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free