High hyperdiploidy defines the largest genetic entity of childhood acute lymphoblastic leukemia (ALL). Despite its relatively low recurrence risk, this subgroup generates a high proportion of relapses. The cause and origin of these relapses remains obscure. We therefore explored the mutational landscape in high hyperdiploid (HD) ALL with whole-exome (n=19) and subsequent targeted deep sequencing of 60 genes in 100 relapsing and 51 non-relapsing cases. We identified multiple clones at diagnosis that were primarily defined by a variety of mutations in receptor tyrosine kinase (RTK)/Ras pathway and chromatin-modifying genes. The relapse clones consisted of reappearing as well as new mutations, and overall contained more mutations. Although RTK/Ras pathway mutations were similarly frequent between diagnosis and relapse, both intergenic and intragenic heterogeneity was essentially lost at relapse. CREBBP mutations, however, increased from initially 18-30% at relapse, then commonly co-occurred with KRAS mutations (P<0.001) and these relapses appeared primarily early (P=0.012). Our results confirm the exceptional susceptibility of HD ALL to RTK/Ras pathway and CREBBP mutations, but, more importantly, suggest that mutant KRAS and CREBBP might cooperate and equip cells with the necessary capacity to evolve into a relapse-generating clone.
CITATION STYLE
Malinowska-Ozdowy, K., Frech, C., Schönegger, A., Eckert, C., Cazzaniga, G., Stanulla, M., … Panzer-Grümayer, R. (2015). KRAS and CREBBP mutations: A relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. Leukemia, 29(8), 1656–1667. https://doi.org/10.1038/leu.2015.107
Mendeley helps you to discover research relevant for your work.