EC-GAN: Low-Sample Classification using Semi-Supervised Algorithms and GANs (Student Abstract)

20Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Semi-supervised learning has been gaining attention as it allows for performing image analysis tasks such as classification with limited labeled data. Some popular algorithms using Generative Adversarial Networks (GANs) for semi-supervised classification share a single architecture for classification and discrimination. However, this may require a model to converge to a separate data distribution for each task, which may reduce overall performance. While progress in semi-supervised learning has been made, less addressed are small-scale, fully-supervised tasks where even unlabeled data is unavailable and unattainable. We therefore, propose a novel GAN model namely External Classifier GAN (EC-GAN), that utilizes GANs and semi-supervised algorithms to improve classification in fully-supervised regimes. Our method leverages a GAN to generate artificial data used to supplement supervised classification. More specifically, we attach an external classifier, hence the name EC-GAN, to the GAN's generator, as opposed to sharing an architecture with the discriminator. Our experiments demonstrate that EC-GAN's performance is comparable to the shared architecture method, far superior to the standard data augmentation and regularization-based approach, and effective on a small, realistic dataset.

Cite

CITATION STYLE

APA

Haque, A. (2021). EC-GAN: Low-Sample Classification using Semi-Supervised Algorithms and GANs (Student Abstract). In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 18, pp. 15797–15798). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i18.17895

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free