Photosynthesis is regulated as a two-way process. Light regulates the expression of genes for photosynthesis and the activity of the gene products (feedforward control). Rate of end-product use down-stream of the Calvin cycle, determined largely by nutrition and temperature, also affects photosynthetic activity and photosynthetic gene expression (feedback control). Whereas feedforward control ensures efficient light use, feedback mechanisms ensure that carbon flow is balanced through the pathways that produce and consume carbon, so that inorganic phosphate is recycled and nitrogen is distributed optimally to different processes to ensure growth and survival. Actual mechanisms are sketchy and complex, but carbon to nitrogen balance rather than carbon status per se is central to understanding carbon metabolite feedback control of photosynthesis. In addition to determining the activity of the metabolic machinery, carbon metabolite feedback mechanisms also regulate photosynthesis at the leaf level through the regulation of leaf development. This review summarizes the current sketchy, but growing, knowledge of the mechanisms through which carbon metabolite feedback mechanisms regulate leaf photosynthesis.
CITATION STYLE
Paul, M. J., & Pellny, T. K. (2003). Carbon metabolite feedback regulation of leaf photosynthesis and development. In Journal of Experimental Botany (Vol. 54, pp. 539–547). https://doi.org/10.1093/jxb/erg052
Mendeley helps you to discover research relevant for your work.