Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand

102Citations
Citations of this article
80Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Sloughing of root cap cells and exudation of mucilage plays an important role in the penetration of compacted soils by roots. For the first time we have quantified the rate of sloughing of root cap cells in an abrasive growth medium that was compacted to create mechanical impedance to root growth. The number of maize (Zea mays) root cap cells sloughed into sand increased as a result of compaction, from 1930 to 3220 d-1 per primary root. This represented a 12-fold increase in the number of cells sloughed per mm root extension (from 60 to > 700). We estimated that the whole of the cap surface area was covered with detached cells in compacted sand, compared with c. 7% of the surface area in loose sand. This lubricating layer of sloughed cells and mucilage probably decreases frictional resistance to soil penetration. The total carbon deposited by the root was estimated at c. 110 μg g-1 sand d-1. Sloughed cells accounted for < 10% of the total carbon, the vast majority of carbon being contained in mucilage exudates.

Cite

CITATION STYLE

APA

Iijima, M., Griffiths, B., & Bengough, A. G. (2000). Sloughing of cap cells and carbon exudation from maize seedling roots in compacted sand. New Phytologist, 145(3), 477–482. https://doi.org/10.1046/j.1469-8137.2000.00595.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free